MASS-SPECTROMETRIC FRAGMENTATION OF THE ALKALOID ARUNDININE

I. Zhalolov, V. U. Khuzhaev,U. A. Abdullaev, and S. F. Aripova

UDC 543.51+547.944/945

The dimeric alkaloid arundinine has been isolated from the perennial giant grass Arundo donax (fam. Gramineae), and its structure has been established on the basis of ¹H and ¹³C NMR results and x-ray structural analysis [1, 2].

We have made an investigation of the mass-spectrometric fragmentation of arundinine using high-resolution regimes. The mass spectrum was taken on a Kratos MS 25 RF spectrometer and on a MKh-1310 instrument with the use of a system for the direct injection of the specimen into the ion source at an energy of 50 eV and an evaporator temperature of $180-190^{\circ}$ C. The mass spectrum of arundinine is characterized by the presence of a peak of the molecular ion with m/z 376, and peaks of fragmentary ions with m/z 333, 204, 191, 190, 173, 159, 146, and 130. The elementary compositions of all these ions were determined on the high-resolution mass spectrometer (Table 1).

The ion peaks with m/z 173 and 130 are diagnostic and are present in the mass spectra of all types of 3-alkyl derivatives of indole alkaloids.

By comparing the accurate mass and elementary composition of the molecular ion of arundinine with those of the abovementioned fragmentary ions, the mass-spectrometric fragmentation of arundinine can be represented in the following way:

Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax (371) 1206489. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 247—249, March-April, 1999. Original article submitted February 24, 1999.

TABLE 1

m/z values of the ions	Accurate masses		C
	experimental	theoretical	Composition
376 (M ⁺)	376.2273	376.2263	C ₂₃ H ₂₈ N ₄ O
333	333.1822	333.1841	$C_{21}H_{23}N_3O$
204	204.1274	204.1262	$C_{12}H_{16}N_2O$
191	191.1192	190.1184	$C_{11}H_{15}N_2O$
190	190.1116	190.1106	$C_{11}H_{14}N_2O$
173	173.1080	173.1078	$C_{11}H_{13}N_2$
159	159.0689	159.0684	C ₁₀ H ₉ NO
146	146.0603	146.0606	C ₉ H ₈ NO
130	130.0657	130.0657	C ₉ H ₆ N

The main direction of the mass-spectrometric fragmentation of arundinine is the breakdown of the molecular ion at the ether bridge into two halves. An ion with m/z 204 is formed from the alkylindole half, while the tricyclic half gives rise to the intense fragments in the spectrum with m/z 191 and 173. The ions with m/z 204 and 173 are direct components of the M^+ ion.

The ion with m/z 191 includes the oxygen atom of the ether bridge. Although its formation takes place through a complex rearrangement mechanism, we give its simplified structure, passing as the result of ejection of an H_2O molecule into an ion with m/z 173. The further breakdown of the above-mentioned fragments leads to the characteristic indole ions described in the literature.

We may note that the ion peak with m/z 58 observed in the low-mass region is characteristic for an N-alkyl chain.

REFERENCES

- 1. Second International Symposium on the Chemistry of Natural Compounds, Eskishehir, Turkey, October 22—24, 1996, p. 19.
- 2. I. Zh. Zhalolov, V. U. Khuzhaev, B. Tashkhodzhaev, M. G. Levkovich, S. F. Aripova, and N. D. Abdullaev, Khim. Prir. Soedin., 790 (1998).